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Finite Element Analysis of all Modes in
Cavities with Circular Symmetry
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Abstract — A field analysis is presented of all modes in a hollow,

conducting cavity with rotational symmetry about an axis. Cavities can be

. periodic along this axis, and the unit (or single) cell can be of arbitrary

longitudinal section, with inhomogeneous dielectric loading. Modes of any

angular dependence of arbitrary phase-shift per unit cell are analyzed. The

finite element method is applied in the longitudinal plane, and uses a
specially developed sparse matrix scheme.

I. INTRODUCTION

COMMON TYPE of electromagnetic cavity consists
of a conducting surface of revolution about an axis.
Sometimes, there is a single such cavity, but often a longi-
tudinally periodic structure of such cavities is used, as in
Fig. 1, and both types are considered in this work.
Because of the large investment in particle accelerators,
with their applications to medicine and physics, the most
serious studies of these cavities have come from this field.
For more than three decades the linear accelerator type of

cavity has been studied [1]-[3], with attention almost exclu--

sively paid to the angular-independent TM,,,, (accelerating)
modes. Good cavity design depends on a field analysis of
these ‘accelerating’ modes, to give dispersion, series imped-
ance, etc., and the latest computer programs [4], [5] deal
with such analysis, giving the dispersion characteristics and
fields of a single hollow cavity of arbitrary longitudinal
section.

The chief omission from previous cavity theories has
been the failure to consider angular dependent modes.
Because of their relevance to ‘pulse-shortening’ [6] and to
particle separators [7], angular-dependent modes (which
have angular dependence cos(n8) or sin(n8), and include
all three components of E and H') have been studied for
the special ‘circular iris-loaded waveguide’ geometry [6],
[71

The work now to be described is an advance on existing
theory in being able to analyze: i) angular dependent
modes (E/H,, or H/E, ) as well as angular independent
modes (TM,,, or TE,,,) for hollow cavities of arbitrarily
shaped longitudinal section (which may be singly- or multi-
ply-connected); ii) a periodic (along the z-axis) structure of
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Fig. 1. Periodic hollow cavity.

such cavities, where operation is at an arbitrary phase shift
per “unit cell’; and iii) an inhomogeneous dielectric loading
of the above cavities, where the structure remains cylindri-
cally symmetrical.

1I. THEORY

The microwave structure under study is assumed to be
periodic and infinite in length, composed of identical and
equally spaced cells of arbitrary longitudinal section, and
to be rotationally symmetric with respect to the axis, as
shown in Fig. 1.

Application of Floquet’s theorem [8] allows us to con-
sider the fields in only one cell. The fields in any other cell
distance pL away from the basic cell are just exp(— jB,pL)
times those in the basic cell. This imposes on the fields a
restriction additional to the usual conducting boundary
conditions. The fields in the section S, at z = L are there-
fore exp(— JjiB, L) times the fields in S, at z =0, where L is
the length of the cell as in Fig. 2.

We will consider fields with time dependence exp( jw?)
and, as the structure is rotationally symmetric, the angular
dependence will be taken as exp(— jnf#) where n is an
integer. The problem is to find the fields that satisfy
Maxwell’s equations throughout the unit cell, including the
usual conducting boundary conditions on the walls, and
that also satisfy the above mentioned periodicity condition.
In practice, what is wanted is the value of the angular
frequency w and the corresponding field distribution over
the unit cell which satisfies the conditions for a specified
value of B, L, the phase shift per unit cell.

Transverse electric and transverse magnetic modes can
exist separately in this corrugated waveguide only if they
are angularly independent. Angular dependent modes can
only exist as hybrid modes, with a combination of the

0018-9480,/82,/1100-1975800.75 ©1982 IEEE



1976

-

SR

.

o

qp!

|

w

w
~

Fig. 2. Longitudinal section of a unit cell (single cavity).

associated TE and TM fields, and these were included in
the earlier studies of iris-loaded periodic guides [6].

A. Variational and Finite Element Formulation

The above problem will now be solved using a varia-
tional and finite element approach. A variational principle
is formulated in terms of the three-component magnetic
field, and stationary values are sought by the Rayleigh—Ritz
and finite element methods.

For the simple TM, angular independent modes, the
choice of a scalar variational expression is immediate [4].
but for hybrid modes the choice is more difficult. A
variational form can be in terms of: i) the longitudinal
components only of £ and H; ii) the transverse compo-
nents of H; iii) the transverse components of E; iv) the
complete vector field H; v) the complete E, or vi) the
complete fields H and E. Methods i)-iii) are the most
economical, in requiring only two scalar components of
field, but the process of economizing introduces a disparity
between the six field components that involves numerical
singularities and spurious solutions. For instance, modes
with phase velocities near the speed of light (which are
clearly important for particle accelerators or separators)
have a singularity in their transverse fields as functions of
radial wavenumber, a singularity that is inevitable with the
TM and the TE formulation of method i) [6], [7]. Method
iv), with the complete H vector field formulation, intro-
duces no disparity between the three components, involves
a field that is spatially continuous and bounded even in the
presence of the discontinuously inhomogeneous dielectric,
and immediately gives correct ‘natural boundary condi-
tions’ at the conducting boundaries. We therefore use as
variational formulation

f(vx H)* (VX H)dv

W=

(1)
fH*quv

For trial fields H(r, z) defined over the unit cell (Fig. 2)
such that
H(r,z)=H(r,z+ L)exp(jB,L)

@)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL. 30, No. 11, NOVEMBER 1982

z

Fig. 3. Nodal arrangement for triangular element with third-degree

polynomial.

it has been shown [9], [10] that (1) is stationary, with
vX(e'"vXH)—*pH=0

(3)
as the associated Euler equation and

nXx(e"'vxH)=0

(4)
as the associated natural boundary conditions.

It has also been shown [10] that the formulation of (1)
corresponds to a positive semidefinite operator—an ad-
vantage for the subsequent finite element solution.

Equation (1) is now minimized by the Rayleigh-Riiz
procedure combined with the finite element method. De-
tails are given elsewhere [10] and the basic approach fol-
lows that of an earlier program description [11]. The unit
cell of Fig. 2 is first divided into a patchwork of triangles
in the r -z plane. Over every triangle, cach field component
H,, Hy, and H, is expressed as a complete polynomial in
(r, z) with exp(jwt)-exp(— jnd)-exp(— jByz) as an im-
plied multiplying factor. Polynomials of degree one to four
are used in any triangle, and the degrees may be the same
or different over the many triangles. An advantage of using
the same degree everywhere is that the resulting field
representation is continuous in » and z everywhere inside
the cavities. The permittivity is assumed constant over each
triangle, but may vary from triangle to triangle.

Rather than use explicit polynomial coefficients of » and
z in each separate triangle, it is more convenient to con-
sider the field components in terms of ‘nodal’ values. For
first degree polynomials, fields are expressed in terms of
the three nodal values at the triangle vertices. Second-,
third-, and fourth-degree polynomials are similarly ex-
pressed in terms of 6, 10, and 15 nodes, a typical arrange-
ment being shown in Fig. 3 for degree 3.

Substituting these piecewise continuous polynomials for
H,, Hy, and H_ into (1), and partially differentiating with
respect to each separate nodal value of H,, Hy, and H,,

gives the standard matrix eigenvalue equation
Ox =k’Rx (5)
where
k2= wlpe

(6)

and the vector x is given by

o

The vector a consists of the nodal values of H,, viz., the
unknown values of H, at all the nodes defined over the unit
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TABLE I
DENSITY OF MATRIX Q OF (5) (AND MATRICES R, OF (5) AND
(8),—V1Z. THE PERCENTAGE OF ELEMENTS WHOSE VALUE IS

NoONZERO
Number of nodes: 30 100 300 1000
Polynomial degree
1 20 6 2.2 0.7
2 30 10 3.5 1.1
3 40 15 5 1.7
4 60 20 7 2.2

cell—and b, ¢ have similarly the H, and H, nodal values.
Q is complex Hermitian and R is real symmetric, posi-
tive definite, arising from the ‘inner products’ of the
numerator and denominator respectively of (1).
Generally, we have ’

2y Qn Qs

0=10y Q@n @xn (8)
Q3 Qn Qs
R, 0 0

R=|0 R, O (9)
0 0 R

For angular independent modes, the above matrices split
up to the separate TM,,, modes (involving Q,,, R,,, b,
and hence Hy) and TE,,, modes (involving Q,;, @13, Q5,
Q35 Ry, R33, a, ¢, and hence H, and H,).

Detailed development of these matrices is described in
the thesis [10], where canonical forms are given for the
‘element describing matrices’ and assembly of the ‘global
matrices’ [11].

B. Matrix Solution

The theory described so far could be considered a gener-
alization of the earlier TM,, work [4], with extensions
being to angular dependent modes and to treatment of
arbitrary phase-shift per unit cell. A further extension lies
in our use of specially developed sparse matrix methods for
solving (5). When the cavity section is divided into many
triangular elements, the matrix elements of (5) are zero for
all pairs of associated nodes that do not belong to the same
triangle. This follows because any field component value at
a node only contributes to the integrals of (1) via integra-
tion over the triangle(s) containing that particular node.
Table I shows typical values of the matrix densities, viz.,
the proportion of matrix elements that are not zero.

Earlier results of our work [12] used standard dense
matrix algorithms for the solution of (5), but their use, as
in earlier TM,,,, work [4] is clearly inefficient in computer
storage and time when 90 percent or more of the matrix
elements are precisely zero. A special algorithm has been
developed [10] and, being of general application, is de-
scribed separately [13]. Briefly, the method combines sub-
space iteration [14] with linked-index techniques [15] to
give any number of selected eigenvalues and, if wanted, the
associated eigenvectors. A special feature of the imple-
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mented method is that, by taking total advantage of the
sparsity of the matrices in (5), the array storage is unusu-
ally economical. If, for a given choice of cavity, of general
pattern of triangular elements, and of polynomial degree,
we simply increase the number of triangular elements, the
usual direct matrix methods require an array that is pro-
portional to the square of N, the number of nodal field
values (which equals the matrix order). By contrast, with
our sparse matrix algorithm, the array is merely propor-
tional to N.

IIL

The analysis was applied to TM,;,, modes, both in dielec-
tric-loaded circular waveguide [10] and in dielectric-loaded
coaxial cavities of complicated shape for use in dielectric
loss measurements [16]. But results will now be given for
just two other geometries, both involving comparison with
experimental values and with values from other theories.
These are the ‘iris-loaded waveguide’, and an ‘arbitrarily
shaped linear accelerator cavity’.

As there are no alternative computed results for
angular-dependent modes in arbitrary shaped cavities, a
particular geometry has been chosen for comparison where
the geometry allows a special and accurate theory to be
available, together with accurate experimental frequencies
[6]. As the earlier work includes a variety of modes, with
different values of phase-shift per unit cell, and accuracies
generally better than 1 percent (judging from comparison
of the earlier theory and experiment), we would regard this
as the best independent ‘benchmark’ for testing of our
theory and computer program.

RESULTS

A. An Iris- Loaded Waveguide

An early design of linear accelerator structure uses cir-
cular waveguide with periodic loading by a conducting iris,
and the simple geometry allowed an accurate theory to be
applied and compared with experiment [6]. The geometry
and dimensions of the basic cell are shown in Fig. 4, which
includes the mesh of triangles used for the finite element
analysis. All modes analyzed were with this mesh division,
involving 48 nodes, 68 triangular elements, and used first-
degree polynomials. As TM, TE, and hybrid modes involve
respectively 1, 2, and 3 components of field, the corre-
sponding matrix orders are 48, 96, and 144, and the
resulting matrix densities are all 12 percent, resulting in
about 24 percent after LU decomposition [10], [14]. Finite
element results are compared in Table II with the earlier
theoretical and experimental results [6], where the same
nomenclature for the hybrid modes has been adopted.

These results were obtained on the minicomputer system
GEC 4082,/4085 at University College, and accuracy is
therefore limited by the core storage restriction of about
160 kbytes for workspace, and by the mantissa of 3 bytes
(24 bits). Finite element solutions are known to improve
substantially with mantissa length [11], and benchmark
tests of our sparse matrix algorithm on a CDC 7600, with
60 bit mantissa, have given excellent results [13].

As expected, accuracy of the finite element results in
Table II diminishes with increasing mode number—there
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Fig. 4. Unit cell for the ins-loaded waveguide. Dimensions are as in [6],
viz guide radius = 41.1 mm, iris hole radius = 10.9 mm, iris thickness =
6.1 mm, and cell length = 26.2 mm.

TABLE II
FREQUENCIES IN MHZ oF 9 MODES IN THE IRIS-LOADED
WAVEGUIDE OF Fic. 4

BoL = O BoL = m/2 ByL = T

F.E. Theor. Exp. F.E. Theor. Exp. F.E. Theor. Exp.
TMO]_ 2858 2840 2836 2901 3086 2872 2872
E/H;; 4456 4385 4376 4442 4266 4250
E/H21 6116 5940 5932 6017 6262 5924 5915
THy, 6685 6551 6550 6852 7227 6722 6741
H/E11 6362 6198 7189 6667 6755 7522 7407 7650
E/l-l12 8289 8082 8065 8259 7943 8010 8303 7630 7610
H/E21 8083 8203 8198 8218 8495 8487 8232 8440
TM03 8222 8347 8751
TE 8793 8632 8858 8639 8284 8426 8646 8244

0l

Bo L gives operation at different phase shifts per unit cell (see Section
IT). Columns headed ‘F.E.” denote results from this fimte element theory;
other columns give theoretical and experimental vatues from [6].

being no more than 6 and 9 sampling points in the z and r
directions, respectively.

B. A Practical Linear Accelerator Cavity

The ability of the finite element program to deal with
cavity sections of arbitrary shape is illustrated in this test.
The TM,, cavity was designed by Oldfield [17] at the
University of Cambridge, for electron-optics research. One
quarter of the longitudinal section is shown in Fig. 5, and
the finite element triangles used are superimposed together
with the degree of polynomial used in each triangle. A
mixed order approximation [11] was selected in order to
take maximum advantage of the available computer
workspace and the computer program’s flexibility. A high
polynomial degree is advisable in the re-entrant region
where the fields vary rapidly, and so a combination of
reduced element size and high degree polynomials was
used in this region, while in the rest of the structure where
weaker fields are expected, larger triangles and lower de-
grees were adopted.

The lines of constant H, calculated from our finite
element program are given in Fig. 6.

Experimentally, the TM;; mode was used with the central
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Fig. 5. One quarter of the longitudinal section of the symmetrical

cavity.

ACCELERATOR CAVITY

FREQ-= 38.088 GHZ

Fig. 6. Hy-constant lines calculated for the cavity of Fig. 3

section corresponding to a length of circular waveguide
operating well beyond cutoff, in order to prevent fields
‘spreading’ away from the single cavity. The evanescent
nature of the fields into the narrow tube can be seen in the
figure.

Table III shows results of the TM,, resonant frequen-
cies. Both results from the ‘F.E. program’ use the same
sparse matrix package described in this work, the UCL
results being obtained with the 53 elements of mixed
degree shown in Fig. 5, using a mantissa of 24 bits on the
GEC minicomputer already mentioned. The F.E. results
from RSRE were obtained using 60 triangles of fourth
degree on an ICL 1906S computer, with a mantissa of 48
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TABLEIII
FREQUENCIES CORRESPONDING TO THE CAVITY OF FIG. 5
Frequency in GHz Error in Z
F.E. program (UCL) 9.098 2.68
F.E. program (RSRE) 9.0094 1.68
F.D, program (RSRE) 8.991 1.47
Experiment (UCL) 8.8604

bits. The F.D. program results are from a finite difference
solution on a 100-by-100 mesh specially programmed at
RSRE [17].

APPENDIX

A. Spurious solutions

As with many finite element and finite difference ap-
proaches to field problems, ‘spurious solutions’” have some-
times emerged from our calculations, viz. solutions that do
not correspond to a physical solution. This problem ap-
pears to be a ‘running sore’ in the topic of finite element
analysis, and the authors have found no cure, but have
investigated some diagnostic tools. Details of our study are
given in [10], but a summary is now given.

We firstly observe that no spurious solutions were found
for angular independent TM modes. They do occur for TE
and for hybrid modes, and they fall into two fairly clear
categories. The first one includes ‘modes’ with very low
eigenvalues, often clustered near zero and separated by
some orders of magnitude from the rest of the spectrum.
The second group of spurious solutions is found in-
terspersed with the real solutions, with eigenvectors having
elements with absolute values similar to the nearest real
solution. An analysis of their phases, however, shows a
very fast spatial variation usually related to the number of
nodal points in the direction concerned.

For the right-hand expression (1) to be zero, we must
have

H=v¢ (10)

where ¢ is arbitrary. The boundary condition of (4) is then
identically satisfied by (10). The arbitrariness of ¢ gives an
infinite multiplicity of eigenvalue zero to (1), and this is
believed to account for the first category of observed
spurious solutions. They do not occur for TM modes
because the operator of (1) is strictly positive-definite.

The same operator is positive semi-definite for TE and
hybrid modes, providing the admissible functions are re-
stricted so as to satisfy (4), but it ceases to be definite if (4)
is not forced. Indefinite systems are known to give rise to
spurious solutions, and so enforcement of boundary condi-
tions (4) would appear a likely worthwhile scheme.

Konrad [18] suggests that in order to satisfy (4) it is
sufficient to make H tangential at the boundary—but we
disagree with this. Enforcing

n-H=0 (11)
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indeed guarantees that
n-vxXE=0

(12)
if we define E via
VX E=— jouH (13)

but this does not guarantee the satisfaction of (4). One
cannot beg the question that both of Maxwell’s curl equa-
tions are satisfied—and generally the finite element solu-
tion will not satisfy Maxwell’s equations, having finite
polynomial field expansions.

We have, nevertheless, experimented with the numerical
enforcement of (11) together with

d(nxH)
-"—5”————0 (14)

at all conducting boundaries. Starting with solutions where
(2) is the only forced boundary condition, the spectrum has
been obtained when (11) is additionally forced, and when
(11) and (14) are added. As each constraint is applied,
some spurious solution eigenvalues are indeed eliminated,
but not all.

One successful experiment, from the point of recognizing
spurious solutions in order to distinguish them from physi-
cal modes, was to investigate the divergence of any field
solutions. From any eigenvector, an approximate integral
of |v-H| over the cavity is calculated. An exact physical
field solution would have zero divergence, and it was found
that the calculated integrals were indeed significantly lower
for the real solutions, so as to be quite recognizable.

POSTSCRIPT

Following a referee’s suggestion, we have added ref-
erences [19] and [20] that concern the finite element matrices
of the type used in this work. The references do not result
in complete programs for cavity analysis, nor were they
actually used in our work, but they give element matrix
details in more generality (and are more accessible) than
our earlier references [9], [10].
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