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Finite Element Analysis of all Modes in
Cavities with Circular Symmetry
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,4bstract—A field analysis is presented of afl modes in a hollow,
conducting cavity with rotational symmetry about an axis. Cavities can be

~ periodic afong this axis, and the unit (or single) cell can be of arbitrary

Iongitudinaf section, with inhomogeneous rfielectic loading. Modes of any

angular dependence of arbitrmy phase-shift per unit cell are anafyzed. The

finite element method is applied in the longitudinal plane, and uses a
speciafly developed sparse matrix scheme,

I. INTRODUCTION

A COMMON TYPE of electromagnetic cavity consists

of a conducting surface of revolution about an axis.

Sometimes, there is a single such cavity, but often a longi-

tudinally periodic structure of such cavities is used, as in

Fig. 1, and both types are considered in this work.

Because of the large investment in particle accelerators,

with their applications to medicine and physics, the most

serious studies of these cavities have come from this field.

For more than three decades the linear accelerator type of

cavity has been studied [1 ]–[3], with attention almost exclu-

sively paid to the angular-independent TMO~ (accelerating)

modes. Good cavity design depends on a field analysis of

these’ accelerating’ modes, to give dispersion, series imped-

ance, etc., and the latest computer programs [4], [5] deal

with such analysis, giving the dispersion characteristics and

fields of a single hollow cavity of arbitrary longitudinal

section.

The chief omission from previous cavity theories has

been the failure to consider angular dependent modes.

Because of their relevance to ‘pulse-shortening’ [6] and to

particle separators [7], angular-dependent modes (which

have angular dependence cos(rr19) or sin(nr3), and include

all three components of E and H) have been studied for

the speciaJ ‘circular iris-loaded waveguide’ geometry [6],

[7].

The work now to be described is an advance on existing

theory in being able to analyze: i) angular dependent

modes ( E/Hn ~ or H/En ~ ) as well as angular independent
modes (TMO~ or TEO~ ) for hollow cavities of arbitrarily

shaped longitudinal section (which may be singly- or multi-

ply-connected); ii) a periodic (along the z-axis) structure of
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Fig. 1. Periodic hollow catity.

such cavities, where operation is at an arbitrary phase shift

per’ unit cell’; and iii) an inhomogeneous dielectric loading

of the above cavities, where the structure remains cylindri-

cally symmetrical.

II. THEORY

The microwave structure under study is assumed to be

periodic and infinite in length, composed of identical and

equally spaced cells of arbitrary longitudinal section, and

to be rotationally symmetric with respect to the axis, as

shown in Fig. 1.

Application of Floquet’s theorem [8] allows us to con-

sider the fields in only one cell. The fields in any other cell

distancepL away from the basic cell are just exp ( – .#OpL)

times those in the basic cell. This imposes on the fields a

restriction additional to the usual conducting boundary

conditions. The fields in the section S2 at z = L are there-

fore exp ( – j@OL) times the fields in S1 at z = 0, Where L is

the length of the cell as in Fig. 2.

We will consider fields with time dependence exp (jot)

and, as the structure is rotationally symmetric, the angular

dependence will be taken as exp ( – jnd) where n is an

integer. The problem is to find the fields that satisfy

Maxwell’s equations throughout the unit cell, including the

usual conducting boundary conditions on the walls, and

that also satisfy the above mentioned periodicity condition.

In practice, what is wanted is the value of the angular

frequency ~ and the corresponding field distribution over

the unit cell which satisfies the conditions for a specified

value of &L, the phase shift per unit cell.
Transverse electric and transverse magnetic modes can

exist separately in this corrugated waveguide only if they

are angularly independent. Angular dependent modes can

only exist as hybrid modes, with a combination of the
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Fig. 2, Longitudinal section of a unit cell (single cavity)

associated TE and TM fields, and these were included in

the earlier studies of iris-loaded periodic guides [6].

A. Variational and Finite Element Formulation

The above problem will now be solved using a varia-

tional and finite element approach. A variational principle

is formulated in terms of the three-component magnetic

field, and stationary values are sought by the Rayleigh–Ritz

and finite element methods.

For the simple TMO angular independent modes, the

choice of a scalar variational expression is immediate [4].

but for hybrid modes the choice is more difficult. A

variational form can be in terms of: i) the longitudinal

components only of E and H; ii) the transverse compo-

nents of H, iii) the transverse components of E; iv) the

complete vector field H, v) the complete E, or vi) the

complete fields H and E. Methods i)–iii) are the most

economical, in requiring only two scalar components of

field, but the process of economizing introduces a disparity

between the six field components that involves numerical

singularities and spurious solutions. For instance, modes

with phase velocities near the speed of light (which are

clearly important for particle accelerators or separators)

have a singularity in their transverse fields as functions of

radial wavenumber, a singularity that is inevitable with the

TM and the TE formulation of method i) [6], [7]. Method

iv), with the complete H vector field formulation, intro-

duces no disparity between the three components, involves

a field that is spatially continuous and bounded even in the

presence of the discontinuously inhomogeneous dielectric,

and immediately gives correct ‘natural boundary condi-

tions’ at the conducting boundaries. We therefore use as

variational formulation

~z =
j@@*~-’(VxH)d~

J
H*pHdv

For trial fields H(r, z) defined over the unit cell

such that

H(r, z)= H(r, z+ L)exp(j~oL)

(1)

(Fig. 2)

(2)

i

K.
—z

Fig. 3. Nodal arrangement for triangular element with third-degree
polynomial.

it has been shown [9], [10] that (1) is stationary, with

vx(c-’vx H)–u2pH=0 (3)

as the associated Euler equation and

nx(E-lvx H)=o (4)

as the associated natural boundary conditions.

It has also been shown [10] that the formulation of (1)

corresponds to a positive semidefinite operator—an ad-

vantage for the subsequent finite element solution.

Equation (1) is now minimized by the Rayleigh–Ritz

procedure combined with the finite element method. De-

tails are given elsewhere [10] and the basic approach fol-

lows that of an earlier program description [11]. The unit

cell of Fig. 2 is first divided into a patchwork of triangles

in the r – z plane. Over every triangle, each field component

H., Ho, and HZ is expressed as a complete polynomial in

(r, z) with exp(jot).exp(– jnd).exp(– #Oz) as an im-

plied multiplying factor. Polynomials of degree one to four

are used in any triangle, and the degrees may be the same

or different over the many triangles. An advantage of using

the same degree everywhere is that the resulting field

representation is continuous in r and z everywhere inside

the cavities. The permittivity is assumed constant over each

triangle, but may vary from triangle to triangle.

Rather than use explicit polynomial coefficients of r and

z in each separate triangle, it is more convenient to con-

sider the field components in terms of ‘nodal’ values. For

first degree polynomials, fields are expressed in terms of

the three nodal values at the triangle vertices. Second-,

third-, and fourth-degree polynomials are similarly ex-

pressed in terms of 6, 10, and 15 nodes, a typical arrange-

ment being shown in Fig. 3 for degree 3.

Substituting these piecewise continuous polynomials for

H,, H@, and HZ into (1), and partially differentiating with

respect to each separate nodal value of H,, Ho, and Hz,

gives the standard matrix eigenvalue equation

Qx = k2Rx (5)

where

kz = CJZpC (6)

and the vector x is given by

()

a
x=b. (7)

c

The vector a consists of the nodal values of H,, viz., the

unknown values of H, at all the nodes defined over the unit
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TABLE I
DENSITY OF MATRIX Q OF (5) (AND MATRICES R,, OF (5) AND

(8),–vIz. THE PERCENTAGE OF ELEMENTS WHOSE VALUE IS

NONZERO
—

Number of nodes: 30 100 300 1000

Polynomial degree

1 20 6 2.2 0.7

2 30 10 3.5 1.1

3 40 15 5 1.7

4 60 20 7 2.2

cell—and b, c have similarly the 1% and Hz nodal values.

Q is complex Hermitian and R is real symmetric, posi-

tive definite, arising from the ‘inner products’ of the

numerator and denominator respectively of (l).

Generally, we have

[)

QI1 Q12 Q13

Q = Q21 Q22 Q23 (8)

Q31 Q32 Q33

H
R,l O 0

R= OR220. (9)

O 0 R33

For angular independent modes, the above matrices split

up to the separate TMO~ modes (involving Q22, R 22, b,
and hence Ho) and TEO~ modes (involving Q11, Qls, Q31,

Q33, R,,, R,,, a, C, and hence H, and H=).
Detailed development of these matrices is described in

the thesis [10], where canonical forms are given for the

‘element describing matrices’ and assembly of the ‘global

matrices’ [11 ].

B. Matrix Solution

The theory described so far could be considered a gener-

alization of the earlier TMol work [4], with extensions

being to angular dependent modes and to treatment of

arbitrary phase-shift per unit cell. A further extension lies

in our use of specially developed sparse matrix methods for

solving (5). When the cavity section is divided into many

triangular elements, the matrix elements of (5) are zero for

all pairs of associated nodes that do not belong to the same

triangle. This follows because any field component value at

a node only contributes to the integrals of (1) via integra-

tion over the triangle(s) containing that particular node.

Table I shows typical values of the matrix densities, viz.,

the proportion of matrix elements that are not zero.

Earlier results of our work [12] used standard dense

matrix algorithms for the solution of (5), but their use, as

in earlier TMo~ work [4] is clearly inefficient in computer

storage and time when 90 percent or more of the matrix

elements are precisely zero. A special algorithm has been

developed [10] and, being of general application, is de-

scribed separately [13]. Briefly, the method combines sub-

space iteration [14] with linked-index techniques [15] to

give any number of selected eigenvalues and, if wanted, the

associated eigenvectors. A special feature of the imple-

mented method is that, by taking total advantage of the

sparsity of the matrices in (5), the array storage is unusu-

ally economical, If, for a given choice of cavity, of general

pattern of triangular elements, and of polynomial degree,

we simply increase the number of triangular elements, the

usual direct matrix methods require an array that is pro-

portional to the square of N, the number of nodal field

values (which equals the matrix order). By contrast, with

our sparse matrix algorithm, the array is merely propor-

tional to N.

111. RESULTS

The analysis was applied to TMom, modes, both in dielec-

tric-loaded circular waveguide [10] and in dielectric-loaded

coaxial cavities of complicated shape for use in dielectric

loss measurements [16]. But results will now be given for

just two other geometries, both involving comparison with

experimental values and with values from other theories.

These are the ‘iris-loaded waveguide’, and an ‘arbitrarily

shaped linear accelerator cavity’.

As there are no alternative computed results for

angular-dependent modes in arbitrary shaped cavities, a

particular geometry has been chosen for comparison where

the geometry allows a special and accurate theory to be

available, together with accurate experimental frequencies

[6]. As the earlier work includes a variety of modes, with

different values of phase-shift per unit cell, and accuracies

generally better than 1 percent (judging from comparison

of the earlier theory and experiment), we would regard this

as the best independent ‘benchmark’ for testing of our

theory and computer program.

A. An Iris-Loaded Waveguide

An early design of linezu accelerator structure uses cir-

cular waveguide with periodic loading by a conducting iris,

and the simple geometry allowed an accurate theory to be

applied and compared with experiment [6]. The geometry

and dimensions of the basic cell are shown in Fig. 4, which

includes the mesh of triangles used for the finite element

analysis. All modes analyzed were with this mesh division,

involving 48 nodes, 68 triangular elements, and used first-

degree polynomials. As TM, TE, and hybrid modes involve

respectively 1, 2, and 3 components of field, the corre-

sponding matrix orders are 48, 96, and 144, and the

resulting matrix densities are all 12 percent, resulting in

about 24 percent after LU decomposition [10], [14]. Finite

element results are compared in Table II with the ‘earlier

theoretical and experimental results [6], where the same

nomenclature for the hybrid modes has been adopted.

These results were obtained on the minicomputer system

GEC 4082/4085 at University College, and accuracy is

therefore limited by the core storage restriction of about

160 kbytes for workspace, and by the mantissa of 3 bytes

(24 bits). Finite element solutions are known to improve

substantially with mantissa length [11 ], and benchmark

tests of our sparse matrix algorithm on a CDC 7600, with

60 bit mantissa, have given excellent results [13].

As expected, accuracy of the finite element results in

Table II diminishes with increasing mode number–there
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Fig. 4. Unit cell for the ins-loaded waveguide. Dimensions are as in [6],
viz guide radius = 41.1 mm, iris hole radius = 10.9 mm, iris thickness =
6.1 mm, and cell length = 26.2 mm.

TABLE II
FREQUENCIES IN MHZ OF 9 MODES IN THE IRIS-LOADED

WAVEGUIDE OF FIG. 4

BeL = O BOL = x12 8WL = T

F.E. Theor. Exp. F.E. Theor. Exp. F.E. Them. Exp.

‘%1 2858 284o 2836 29o1 3086 2872 2872

E/HI I 4456 4385 4376 4442 4266 425o

E/H21 6116 5940 5932 6017 6262 5924 5915

=M02
6685 6551 655o 6852 7227 6722 6741

H/Ell 6362 6198 7189 6667 6755 7522 7407 765o

E/H12 8289 8082 8065 8259 7943 8010 83o3 763o 7610

H/Ezl 8083 82o3 8198 8218 8495 8487 8232 844o

~o 3
8222 8347 8751

TE~, 8793 8632 8858 8639 8284 8426 S646 8244

&L gives operation at different phase shifts per unit cell (see Section
II). Columns headed ‘ F. E.’ denote results from this firute element theory;

other columns give theoretical and experimental values from [6].

being no more than 6 and 9 sampling points in the z and r

directions, respectively.

B. A Practical Linear Accelerator Cavity

The ability of the finite element program to deal with

cavity sections of arbitrary shape is illustrated in this test.

The TMO1 cavity was designed by Oldfield [17] at the

University of Cambridge, for electron-optics research. One

quarter of the longitudinal section is shown in Fig. 5, and

the finite element triangles used are superimposed together

with the degree of polynomial used in each triangle. A

mixed order approximation [11 ] was selected in order to

take maximum advantage of the available computer

workspace and the computer program’s flexibility. A high

polynomial degree is advisable in the re-entrant region

where the fields vary rapidly, and so a combination of

reduced element size and high degree polynomials was

used in this region, while in the rest of the structure where

weaker fields are expected, larger triangles and lower de-

grees were adopted.

The lines of constant Ho calculated from our finite

element program are given in Fig. 6.

Experimentally, the TMOI mode was used with the central

Fig. 5. One quarter of the longitudinal section of the symmetrical
cavity.

‘REQ=’oo’8GHzR
ACCELERATOR CAVITY

Fig. 6. Hal-constant lines calculated for the cavity of Fig. 5

section corresponding to a length of circular waveguide

operating well beyond cutoff, in order to prevent fields

‘spreading’ away from the single cavity. The evanescent

nature of the fields into the narrow tube can be seen in the

figure.

Table III shows results of the TMOI resonant frequen-

cies. Both results from the ‘ F.E. program’ use the same

sparse matrix package described in this work, the UCL

results being obtained with the 53 elements of mixed

degree shown in Fig. 5, using a mantissa of 24 bits on the

GEC minicomputer already mentioned. The F.E. results

from RSRE were obtained using 60 triangles of fourth

degree on an ICL 1906S computer, with a mantissa of 48
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TABLE 111

FREQUENCIES CORRESPONDING TO THE CAVITY OF FIG. 5

[
I

Frecpemy in GHz Error in Z 1

bits. The F.D.

solution on a

RSRE [17].

program results are from a finite difference

100-by- 100 mesh specially programmed at

APPENDIX

A. Spurious solutions

As with many finite element and finite difference ap-

proaches to field problems, ‘spurious solutions’ have some-

times emerged from our calculations, viz. solutions that do

not correspond to a physical solution. This problem ap-

pears to be a ‘running sore’ in the topic of finite element

analysis, and the authors have found no cure, but have

investigated some diagnostic tools. Details of our study are

given in [10], but a summary is now given.

We firstly observe that no spurious solutions were found

for angular independent TM modes. They do occur for TE

and for hybrid modes, and they fall into two fairly clear

categories. The first one includes ‘modes’ with very low

eigenvalues, often clustered near zero and separated by

some orders of magnitude from the rest of the spectrum.

The second group of spurious solutions is found in-

terspersed with the real solutions, with eigenvectors having

elements with absolute values similar to the nearest real

solution. An analysis of their phases, however, shows a

very fast spatial variation usually related to the number of

nodal points in the direction concerned.

For the right-hand expression (1) to be zero, we must

have

H=v@ (lo)

where @is arbitrary. The boundary condition of (4) is then

identically satisfied by (10). The arbitrariness of @gives an

infinite multiplicity of eigenvalue zero to (1), and this is

believed to account for the first category of observed

spurious solutions. They do not occur for TM modes

because the operator of (1) is strictly positive-definite.

The same operator is positive semi-definite for TE and

hybrid modes, providing the admissible functions are re-

stricted so as to satisfy (4), but it ceases to be definite if (4)

is not forced. Indefinite systems are known to give rise to

spurious solutions, and so enforcement of boundary condi-

tions (4) would appear a likely worthwhile scheme.

Konrad [18] suggests that in order to satisfy (4) it is

sufficient to make H tangential at the boundary—but we

disagree with this. Enforcing

n.H=O (11)

1979

indeed guarantees that

n.vx E=o (12)

if we define E via

vXE=–jupH (13)

but this does not guarantee the satisfaction of (4). One

cannot beg the question that both of Maxwell’s curl equa-

tions are satisfied—and generally the finite element solu-

tion will not satisfy Maxwell’s equations, having finite

polynomial field expansions.

We have, nevertheless, experimented with the numerical

enforcement of (11) together with

i@xH)=o

h
(14)

at all conducting boundaries. Starting with solutions where

(2) is the only forced boundary condition, the spectrum has

been obtained when (11) is additionally forced, and when

(11) and (14) are added. As each constraint is applied,

some spurious solution eigenvalues are indeed eliminated,

but not all.

One successful experiment, from the point of recognizing

spurious solutions in order to distinguish them from physi-

cal modes, was to investigate the divergence of any field

solutions. From any eigenvector, an approximate integral

of Iv-HI 2over the cavity is calculated. An exact physical

field solution would have zero divergence, and it was found

that the calculated integrals were indeed significantly lower

for the real solutions, so as to be quite recognizable.

POSTSCRIPT

Following a referee’s suggestion, we have added ref-

erences [19] and [20] that concern the finite element matrices

of the type used in this work. The references do not result

in complete programs for cavity analysis, nor were they

actually used in our work, but they give element matrix

details in more generality (and are more accessible) than

our
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